

Capacitor Variation. To help reduce the increasing ripple with each stage, larger capacitors can be used at the bottom. If the first stage is n^*C , then the next could be $(n-1)^*C$, then the next could be $(n-2)^*C$, and so on. The ripple equation them becomes: Vripple=Iload/C. To find the optimum number of stages given a certain input voltage and required output voltage, easy way: $n=sqrt(Vpk^*Freq^*C/Iload)$. This works for n>5. For n<5, $n=sqrt(3^*Iload^*(7^*Iload+48^*Freq^*C^*Vpk))/(12^*Iload)-1/4$. Without knowing the frequency and capacitors, n can be approximated by: $n=3^*Vout/4^*Vpk$.

Full Wave calculation changes. Vdrop = $(Iload/(6*Freq*C))*(n^3+2n)$. If all stage capacitors are equal, Vripple=(Iload/(2*Freq*C)*n). The optimum stage count: n = 0.521*Vout/Vpk.